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Difficult Cases for HLS

• Which schedules can be achieved with HLS tools?
– What are desirable schedules?

• How software programmers handle such cases?
– What is the situation with traditional multicore processors?

• Has the research community tried the same for HLS?
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1
Variable Latency

How can one cope with variable latency operations
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Variable Latency
• Variable latencies in computations, memory accesses, or loop execution time

– Floating-point units, cache hit/miss, variable loop bounds, early-exit condition,…
– Prevent good pipelining using standard HLS techniques
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Conservative Pipelines
• Static HLS: assume the worst-case latency

– Reserve additional pipeline stages for variable-latency operations
– Hardware overhead in area (power, timing) may not be feasible for larger latencies
– High throughput in particular cases (e.g., no loop-carried dependencies on variable-latency op)

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Focus on the inner 
loop, initially

Sparse-matrix 
dense-vector 
multiplication

(SpMV)
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Conservative Pipelines
• Static HLS: assume the worst-case latency

– Reserve additional pipeline stages for variable-latency operations
– Hardware overhead in area (power, timing) may not be feasible for larger latencies
– High throughput in particular cases (e.g., no loop-carried dependencies on variable-latency op)

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency 
memory access Cache hit latency = 1

Cache miss latency = 4
N (number of loop iterations) = 3

L (iteration latency) = 9
II (initiation interval) = 1

Total latency = (N-1)*II + L = 17

High throughput at a latency & area cost

Assuming worst-case latency: regardless of whether a cache hit or miss 
occurs, create schedule assuming it is a miss
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Conservative Pipelines
• Static HLS: assume the worst-case latency

– Reserve additional pipeline stages for variable-latency operations
– Hardware overhead in area (power, timing) may not be feasible for larger latencies
– High throughput in particular cases (e.g., no loop-carried dependencies on variable-latency op)

Assuming worst-case latency: regardless of actual add latency, create schedule assuming max. 
latency 

Add latency = 1-3
L = 8

II = 3 always!
Total latency = 14

Worst-case throughput in case of loop-carried dependency! 
(plus latency & area cost)

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency 
addition
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Pipeline Stalling
• Static HLS: stall entire pipeline in case of a variable-latency event

– Schedule each operation based on its minimum latency
– If an operation does not complete within min. latency, block operation and stall pipeline

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency 
memory access

Stalling entire pipeline in case the operation does not complete in min. latency

Cache hit latency = 1
Cache miss latency = 4

II = 1-4
Best-case total latency = 11

Worst-case total latency = 17

Performance significantly varies with the number and distribution of cache misses

FSM stall

FSM stall
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Pipeline Stalling
• Static HLS: stall entire pipeline in case of a variable-latency event

– Schedule each operation based on its minimum latency
– If an operation does not complete within min. latency, block operation and stall pipeline

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

FSM stall

FSM stall

Stalling entire pipeline in case the operation does not complete in min. latency

Variable-latency 
addition

FSM stall
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Dataflow
• Dynamic HLS: naturally handles variable latencies

– Handshaking mechanism stalls the successors of long-latency operation
– Other computations can advance during stall
– Yet, computations in the same unit happen strictly in order

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency 
memory access

Dynamically scheduled pipeline: some computations can advance during long-
latency stall
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Dataflow
• Dynamic HLS: naturally handles variable latencies

– Handshaking mechanism stalls the successors of long-latency operation
– Other computations can advance during stall
– Yet, computations in the same unit happen strictly in order

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency 
addition

Schedule also adapts well in the presence of loop-carried variably-latency 
dependencies

Dynamically scheduled pipeline: some computations can advance during long-
latency stall

However, pipeline is sometimes unused due to in-order computation execution
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Superscalar Processors
• Fully out-of-order pipelines

– Loop iterations are started speculatively
– All operations execute completely out-of-order, only respecting dependencies

• In HLS, associativity analysis could even give a better result
– Yet, nobody went there in HLS in a general way, not even respecting dependence ordering

Out-of-order pipelines: maximal throughput exploiting further reordering opportunities

Out-of-order processors: perfect throughput if perfect instruction supply and branch prediction
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2
Memory and Caches

A key source of variable latency
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Access/Execute Decoupling
• Separate variable-latency memory accesses and computation

– Data is loaded from memory, stored in FIFOs, and sent to execution datapath as soon as ready
– Requires nontrivial code restructuring (by user or compiler)
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Access/Execute Decoupling
• Separate variable-latency memory accesses and computation

– Data is loaded from memory, stored in FIFOs, and sent to execution datapath as soon as ready
– Requires nontrivial code restructuring (by user or compiler)

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

#pragma HLS dataflow
for (c = s; c < e; c++) {

cid = col[c];
fifo_vec.write(vec[cid]);

vec = fifo_vec.read();
tmp += val[c] * vec;

}

out[i] = tmp;
}

Using the dataflow pragma and A/E decoupling in VivadoHLS
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Access/Execute Decoupling
• Separate variable-latency memory accesses and computation

– Data is loaded from memory, stored in FIFOs, and sent to execution datapath as soon as ready
– Requires nontrivial code restructuring (by user or compiler)

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency 
memory access

But in-order execution still prevents full datapath utilization

Execution similar to that of a dynamic schedule but composing static building blocks

stall

In-order access/execute decoupling
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Out-of-Order Access/Execute Decoupling
• Separate variable-latency memory accesses and computation

– Allow out-of-order dequeuing
– Requires even less trivial code restructuring (by user or compiler)

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency 
memory access

Latency of some iterations can be completely hidden 
 depends on distribution of short/long iterations

Effective II can be 1 even in the presence of cache misses 
 unlike previous solutions, a cache miss does not necessarily lower the II 

(other iterations can proceed out-of-order)

Out-of-order access/execute decoupling: maximal throughput
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Locally Out-of-Order Pipelines
• “Multithreaded” Pipeline Synthesis

– Only locally dynamically scheduled and locally out-of-order, 
– Specific operations are suspended (i.e., context saved) and can execute out-of-order
– Suspended operations releases resources, subsequent ones can continue without stalling
– No general tagging and no reordering thanks to associativity and commutativity

Iterations can reorder inside the pipeline and a context 
buffer keeps track of the order and the context 

(i.e., live values of the thread)

Locally out-of-order pipelines: maximal throughput
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3
Nested Loops

When variable latency becomes truly painful
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for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable Loop Bounds
• In addition to operations, the number of loop iterations can also be variable

– E.g., loop bounds computed at runtime, early exit condition,…
– As in the case of variable-latency operations, not trivial to handle with standard HLS

Variable loop bounds Now considering 
the whole code
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for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable Loop Bounds
• Static HLS: start a new inner loop only when previous one completes

– When all loop bounds are known, loops can be analysed statically and flattened
– In general case: exit inner loop, compute new loop bounds, enter inner loop

Variable loop bounds Inner-loop pipeline has to empty before another inner loop can start: pipeline 
empty for inner loop iteration latency + loop bound computation latency

Average II lowered during loop transitions
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Access/Execute Decoupling
• A/E decoupling works here, but the transformation is even more complex:

– Compute loop bounds and enqueue into FIFO
– Dequeue bounds and execute inner loop

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable loop bounds

II = 1 (assuming FIFOs are appropriately sized)
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Dataflow
• Dynamic HLS: naturally starts a new loop as soon as pipeline is ready

– No special mechanism or transformation required

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable loop bounds

II = 1 (no transformations needed, FIFOs placement automatic)
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Loop-Carried Dependencies
• Dynamic HLS: in-order pipelines

– Different operations execute out of order with respect to each other, but each operation 
processes its own data in order

– Limited throughput in case of long-latency loop-carried dependencies

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Long latency adder

In-order dataflow execution: the long-latency addition limits the II of 
each inner loop to II = 3. A new inner loop can start at best one cycle 

after the last iteration of the previous loop
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Superscalar Processors
• Fully out-of-order pipelines

– All loop iterations (outer and inner) are started speculatively
– All operations execute completely out-of-order, only respecting dependencies

Out-of-order processors: again perfect throughput if perfect instruction supply and branch prediction
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4
Multiple Pipelines

Exploiting parallelism beyond ILP
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Spatial Parallelism
• So far, instruction-level parallelism within a single datapath
• Replicate datapath/kernel to increase parallelism
• Challenges:

– How to express the parallelism to the compiler?
– How to maximize utilization of each datapath?
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Loop Unrolling
• Standard unrolling: replicate computations within a loop

– Achieves spatial parallelism in regular loops
– Not suitable for irregular code (e.g., unknown loop bounds, memory/data dependencies)

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
#pragma HLS unroll factor=2

cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Unrolling with an HLS pragma

Does not increase performance due to loop-carried dependency! 
Exactly the same performance as a perfect pipeline (effective II = 1)
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Task Parallelism (Loop Replication)
• Replicate loops and execute multiple loop instances in parallel

– Difficult to express using a C-based HLS tool (code restructuring and pragmas)

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

#pragma HLS dataflow
for (i = 0; i < num_rows, i+=2) {
tmp1 = 0; tmp2 = 0; 
fifo_s1.write(row[i]); fifo_e1.write(row[i+1]);
fifo_s2.write(row[i+1]); fifo_e2.write(row[i+2]);

s1=fifo_s1.read(); e1=fifo_e1.read();

for (c = s1; c < e1; c++) {
cid1 = col[c];
tmp1 += val[c] * vec[cid];

}
out[i] = tmp1;

s2=fifo_s2.read(); e2=fifo_e2.read();

for (c = s2; c < e2; c++) {
cid2 = col[c];
tmp2 += val[c] * vec[cid];

}
out[i+1] = tmp2;

}

Using the dataflow pragma and A/E decoupling to parallelize loops

Looks and feels like 
VivadoHLS code but almost 

certainly does not work!
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Task Parallelism (Loop Replication)
• Replicate loops and execute multiple loop instances in parallel

– Difficult to express using a C-based HLS tool (code restructuring and pragmas)

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Outer loop

Inner loop 1

Inner loop 2
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Multithreading
• C-based HLS tools require a structural description of the pipeline connectivity
• Yet, fork-join schemes express the same in software implementations

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Using a common fork-join scheme to parallelize loops

for (i = 0; i < num_rows, i+=2) {
s = row[i]; e = row[i+1];
pthread_create(&th1, NULL, colvec_prod, s, e);

s = row[i+1]; e = row[i+2];
pthread_create(&th2, NULL, colvec_prod, s, e);

pthread_join(th1, &tmp1);
pthread_join(th2, &tmp2);

out[i] = tmp1; 
out[i+1] = tmp2;

}

Inner loop in a function
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Multithreading
• Research work has shown support for pThreads in HLS
• Some (important) limitations: number of tasks/threads known at compile time 

(unadapted to recursive algorithms, etc.)

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}
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Simple Multithreading
• Replicate loops and execute multiple loop instances in parallel
• Increases parallelism, but datapaths not fully used if inner loop latencies differ

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Datapath unused due to different loop latencies
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5
Advanced Fork-Join Schemes

Cilk, CilkPlus, Intel TBB, etc.
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Multithreaded Runtime Systems
• Old idea in HPC: Cilk (MIT, 1994) and Cilk Plus (Intel, 2009), then Threading Building 

Blocks or TBB (Intel, 2000’s)
• Lightweight tasks running over a fixed number of threads
• Work-stealing schedulers to load balance threads
• State of the art software paradigm for algorithms with strongly dynamic behavior

(e.g., recursive algorithms)

Maximal datapath usage and throughput
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Simple Automatic Partitioning
• Similar to A/E decoupling in connecting static FSM through buffers
• Load balancing to maximize parallelism and kernel utilization

– Dispatch computation to processing units based on availability

for (i = 0; i < num_rows, i++) {
tmp = 0; 
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Each dynamic-bound inner loop is mapped to a loop 
processing array (LPA), which consists of multiple loop 

processing units (LPUs). The distributor contains a scheduler 
with a dynamic work distribution policy. 

Simple case: no recursion possible

A

B

C
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Multithreaded Runtime Systems in Hardware
• Very few efforts to “imitate” Cilk and TBB in HLS (1/2): ParallelXP

– Not quite Cilk/TBB nor really HLS
– Exploits the continuation passing idea to create a customizable runtime system where users 

can plug in their own processing elements   

Support for
recursion

Load balancing 
in hardware
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Multithreaded Runtime Systems in Hardware
• Very few efforts to “imitate” Cilk and TBB in HLS (2/2): TAPAS

– More of an HLS/compiler effort, based on a compiler front end supporting fork-join
– Only direct connection between task units based on parent-child relations (multiple units 

for the same task? load balancing among them?)  
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6
Conclusions

HLS, software programmers, and accelerators



4
0

Takeaway

• High-Level Synthesis is a fairly mature field with a number of options available

• Of commercial interest virtually only for FPGAs; ASIC designers seem to stick almost 
exclusively to RTL because they want to get everything they can from technology

• Still, it is not really meant to (nor in fact does) give access to FPGAs for software 
programmers; most of the available options speed-up development for hardware 
engineers who more or less know what they want

• Only very slow movement towards software support for irregular parallelism (the 
one which might interest software programmers attracted by FPGAs).
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Caveat #1

• Processors exploit amazingly well transistors in a given technology
• GPUs do that too and also extract a huge lot of parallelism—when the 

application fits the architecture
• ASICs are for the lucky few, but if an application is sufficiently important 

(e.g., Google’s TPUs), they are unbeatable, almost by definition
• On FPGAs, one must fight the overhead of reconfigurability (one order of 

magnitude slower and bigger?) before one can gain!
• Maybe FPGAs are not the right reconfigurable platform for accelerators…

The accelerator design must compensate 
for the FPGA reconfigurability
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Caveat #2

• HLS is getting better at designing the computational part of accelerators
• Most of the performance depends on moving data efficiently
• Even the simplest aspects of this are hard or hopeless for HLS compilers 

(memory disambiguation, etc.)
• Few tools to help designing application-specific memory systems
• Expect to plan data movement by hand—and to code it in RTL…

“It’s the memory, stupid!”
Dick Sites, 1996
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Caveat #3

• HLS tools are ok with fine grain parallelism (akin to ILP) but not more
• HLS tools have embraced some languages for specific computational 

patterns (CUDA, OpenCL,…)—but are GPUs not better when you can use 
these languages proficiently?

• Very limited efforts and progress in adopting programming models where 
FPGA acceleration might truly excel

• Manual design in RTL (with ad-hoc use of HLS, perhaps) seems the only 
way of achieving truly competitive accelerators today

HLS may give you great kernels but does 
not give you full accelerators
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