
1

Advanced
Computer Architecture

—
Part II: Embedded Computing

Challenges of HLS

Paolo Ienne
<paolo.ienne@epfl.ch>

(with Lana Josipović)

2

Difficult Cases for HLS

• Which schedules can be achieved with HLS tools?
– What are desirable schedules?

• How software programmers handle such cases?
– What is the situation with traditional multicore processors?

• Has the research community tried the same for HLS?

3

1
Variable Latency

How can one cope with variable latency operations

4

Variable Latency
• Variable latencies in computations, memory accesses, or loop execution time

– Floating-point units, cache hit/miss, variable loop bounds, early-exit condition,…
– Prevent good pipelining using standard HLS techniques

5

Conservative Pipelines
• Static HLS: assume the worst-case latency

– Reserve additional pipeline stages for variable-latency operations
– Hardware overhead in area (power, timing) may not be feasible for larger latencies
– High throughput in particular cases (e.g., no loop-carried dependencies on variable-latency op)

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Focus on the inner
loop, initially

Sparse-matrix
dense-vector
multiplication

(SpMV)

6

Conservative Pipelines
• Static HLS: assume the worst-case latency

– Reserve additional pipeline stages for variable-latency operations
– Hardware overhead in area (power, timing) may not be feasible for larger latencies
– High throughput in particular cases (e.g., no loop-carried dependencies on variable-latency op)

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency
memory access Cache hit latency = 1

Cache miss latency = 4
N (number of loop iterations) = 3

L (iteration latency) = 9
II (initiation interval) = 1

Total latency = (N-1)*II + L = 17

High throughput at a latency & area cost

Assuming worst-case latency: regardless of whether a cache hit or miss
occurs, create schedule assuming it is a miss

7

Conservative Pipelines
• Static HLS: assume the worst-case latency

– Reserve additional pipeline stages for variable-latency operations
– Hardware overhead in area (power, timing) may not be feasible for larger latencies
– High throughput in particular cases (e.g., no loop-carried dependencies on variable-latency op)

Assuming worst-case latency: regardless of actual add latency, create schedule assuming max.
latency

Add latency = 1-3
L = 8

II = 3 always!
Total latency = 14

Worst-case throughput in case of loop-carried dependency!
(plus latency & area cost)

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency
addition

8

Pipeline Stalling
• Static HLS: stall entire pipeline in case of a variable-latency event

– Schedule each operation based on its minimum latency
– If an operation does not complete within min. latency, block operation and stall pipeline

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency
memory access

Stalling entire pipeline in case the operation does not complete in min. latency

Cache hit latency = 1
Cache miss latency = 4

II = 1-4
Best-case total latency = 11

Worst-case total latency = 17

Performance significantly varies with the number and distribution of cache misses

FSM stall

FSM stall

9

Pipeline Stalling
• Static HLS: stall entire pipeline in case of a variable-latency event

– Schedule each operation based on its minimum latency
– If an operation does not complete within min. latency, block operation and stall pipeline

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

FSM stall

FSM stall

Stalling entire pipeline in case the operation does not complete in min. latency

Variable-latency
addition

FSM stall

1
0

Dataflow
• Dynamic HLS: naturally handles variable latencies

– Handshaking mechanism stalls the successors of long-latency operation
– Other computations can advance during stall
– Yet, computations in the same unit happen strictly in order

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency
memory access

Dynamically scheduled pipeline: some computations can advance during long-
latency stall

1
1

Dataflow
• Dynamic HLS: naturally handles variable latencies

– Handshaking mechanism stalls the successors of long-latency operation
– Other computations can advance during stall
– Yet, computations in the same unit happen strictly in order

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency
addition

Schedule also adapts well in the presence of loop-carried variably-latency
dependencies

Dynamically scheduled pipeline: some computations can advance during long-
latency stall

However, pipeline is sometimes unused due to in-order computation execution

1
2

Superscalar Processors
• Fully out-of-order pipelines

– Loop iterations are started speculatively
– All operations execute completely out-of-order, only respecting dependencies

• In HLS, associativity analysis could even give a better result
– Yet, nobody went there in HLS in a general way, not even respecting dependence ordering

Out-of-order pipelines: maximal throughput exploiting further reordering opportunities

Out-of-order processors: perfect throughput if perfect instruction supply and branch prediction

1
3

2
Memory and Caches

A key source of variable latency

1
4

Access/Execute Decoupling
• Separate variable-latency memory accesses and computation

– Data is loaded from memory, stored in FIFOs, and sent to execution datapath as soon as ready
– Requires nontrivial code restructuring (by user or compiler)

So
ur

ce
: T

. H
am

, J
. L

. A
ra

gó
n,

 a
nd

 M
. M

ar
to

no
si,

 A
CM

 TA
CO

, J
un

e
20

17

1
5

Access/Execute Decoupling
• Separate variable-latency memory accesses and computation

– Data is loaded from memory, stored in FIFOs, and sent to execution datapath as soon as ready
– Requires nontrivial code restructuring (by user or compiler)

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

#pragma HLS dataflow
for (c = s; c < e; c++) {

cid = col[c];
fifo_vec.write(vec[cid]);

vec = fifo_vec.read();
tmp += val[c] * vec;

}

out[i] = tmp;
}

Using the dataflow pragma and A/E decoupling in VivadoHLS

1
6

Access/Execute Decoupling
• Separate variable-latency memory accesses and computation

– Data is loaded from memory, stored in FIFOs, and sent to execution datapath as soon as ready
– Requires nontrivial code restructuring (by user or compiler)

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency
memory access

But in-order execution still prevents full datapath utilization

Execution similar to that of a dynamic schedule but composing static building blocks

stall

In-order access/execute decoupling

1
7

Out-of-Order Access/Execute Decoupling
• Separate variable-latency memory accesses and computation

– Allow out-of-order dequeuing
– Requires even less trivial code restructuring (by user or compiler)

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable-latency
memory access

Latency of some iterations can be completely hidden
 depends on distribution of short/long iterations

Effective II can be 1 even in the presence of cache misses
 unlike previous solutions, a cache miss does not necessarily lower the II

(other iterations can proceed out-of-order)

Out-of-order access/execute decoupling: maximal throughput

1
8

Locally Out-of-Order Pipelines
• “Multithreaded” Pipeline Synthesis

– Only locally dynamically scheduled and locally out-of-order,
– Specific operations are suspended (i.e., context saved) and can execute out-of-order
– Suspended operations releases resources, subsequent ones can continue without stalling
– No general tagging and no reordering thanks to associativity and commutativity

Iterations can reorder inside the pipeline and a context
buffer keeps track of the order and the context

(i.e., live values of the thread)

Locally out-of-order pipelines: maximal throughput

So
ur

ce
: M

. T
an

, B
. L

iu
, S

. D
ai

, a
nd

 Z
. Z

ha
ng

, I
CC

AD
, 2

01
4

1
9

3
Nested Loops

When variable latency becomes truly painful

2
0

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable Loop Bounds
• In addition to operations, the number of loop iterations can also be variable

– E.g., loop bounds computed at runtime, early exit condition,…
– As in the case of variable-latency operations, not trivial to handle with standard HLS

Variable loop bounds Now considering
the whole code

2
1

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable Loop Bounds
• Static HLS: start a new inner loop only when previous one completes

– When all loop bounds are known, loops can be analysed statically and flattened
– In general case: exit inner loop, compute new loop bounds, enter inner loop

Variable loop bounds Inner-loop pipeline has to empty before another inner loop can start: pipeline
empty for inner loop iteration latency + loop bound computation latency

Average II lowered during loop transitions

2
2

Access/Execute Decoupling
• A/E decoupling works here, but the transformation is even more complex:

– Compute loop bounds and enqueue into FIFO
– Dequeue bounds and execute inner loop

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable loop bounds

II = 1 (assuming FIFOs are appropriately sized)

2
3

Dataflow
• Dynamic HLS: naturally starts a new loop as soon as pipeline is ready

– No special mechanism or transformation required

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Variable loop bounds

II = 1 (no transformations needed, FIFOs placement automatic)

2
4

Loop-Carried Dependencies
• Dynamic HLS: in-order pipelines

– Different operations execute out of order with respect to each other, but each operation
processes its own data in order

– Limited throughput in case of long-latency loop-carried dependencies

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Long latency adder

In-order dataflow execution: the long-latency addition limits the II of
each inner loop to II = 3. A new inner loop can start at best one cycle

after the last iteration of the previous loop

2
5

Superscalar Processors
• Fully out-of-order pipelines

– All loop iterations (outer and inner) are started speculatively
– All operations execute completely out-of-order, only respecting dependencies

Out-of-order processors: again perfect throughput if perfect instruction supply and branch prediction

2
6

4
Multiple Pipelines

Exploiting parallelism beyond ILP

2
7

Spatial Parallelism
• So far, instruction-level parallelism within a single datapath
• Replicate datapath/kernel to increase parallelism
• Challenges:

– How to express the parallelism to the compiler?
– How to maximize utilization of each datapath?

2
8

Loop Unrolling
• Standard unrolling: replicate computations within a loop

– Achieves spatial parallelism in regular loops
– Not suitable for irregular code (e.g., unknown loop bounds, memory/data dependencies)

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
#pragma HLS unroll factor=2

cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Unrolling with an HLS pragma

Does not increase performance due to loop-carried dependency!
Exactly the same performance as a perfect pipeline (effective II = 1)

2
9

Task Parallelism (Loop Replication)
• Replicate loops and execute multiple loop instances in parallel

– Difficult to express using a C-based HLS tool (code restructuring and pragmas)

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

#pragma HLS dataflow
for (i = 0; i < num_rows, i+=2) {
tmp1 = 0; tmp2 = 0;
fifo_s1.write(row[i]); fifo_e1.write(row[i+1]);
fifo_s2.write(row[i+1]); fifo_e2.write(row[i+2]);

s1=fifo_s1.read(); e1=fifo_e1.read();

for (c = s1; c < e1; c++) {
cid1 = col[c];
tmp1 += val[c] * vec[cid];

}
out[i] = tmp1;

s2=fifo_s2.read(); e2=fifo_e2.read();

for (c = s2; c < e2; c++) {
cid2 = col[c];
tmp2 += val[c] * vec[cid];

}
out[i+1] = tmp2;

}

Using the dataflow pragma and A/E decoupling to parallelize loops

Looks and feels like
VivadoHLS code but almost

certainly does not work!

3
0

Task Parallelism (Loop Replication)
• Replicate loops and execute multiple loop instances in parallel

– Difficult to express using a C-based HLS tool (code restructuring and pragmas)

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Outer loop

Inner loop 1

Inner loop 2

3
1

Multithreading
• C-based HLS tools require a structural description of the pipeline connectivity
• Yet, fork-join schemes express the same in software implementations

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Using a common fork-join scheme to parallelize loops

for (i = 0; i < num_rows, i+=2) {
s = row[i]; e = row[i+1];
pthread_create(&th1, NULL, colvec_prod, s, e);

s = row[i+1]; e = row[i+2];
pthread_create(&th2, NULL, colvec_prod, s, e);

pthread_join(th1, &tmp1);
pthread_join(th2, &tmp2);

out[i] = tmp1;
out[i+1] = tmp2;

}

Inner loop in a function

3
2

Multithreading
• Research work has shown support for pThreads in HLS
• Some (important) limitations: number of tasks/threads known at compile time

(unadapted to recursive algorithms, etc.)

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

So
ur

ce
: J

. C
ho

i,
S.

 D
. B

ro
w

n,
 J.

 H
. A

nd
er

so
n,

 IE
EE

 T
VL

SI
, O

ct
ob

er
 2

01
7

3
3

Simple Multithreading
• Replicate loops and execute multiple loop instances in parallel
• Increases parallelism, but datapaths not fully used if inner loop latencies differ

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Datapath unused due to different loop latencies

3
4

5
Advanced Fork-Join Schemes

Cilk, CilkPlus, Intel TBB, etc.

3
5

Multithreaded Runtime Systems
• Old idea in HPC: Cilk (MIT, 1994) and Cilk Plus (Intel, 2009), then Threading Building

Blocks or TBB (Intel, 2000’s)
• Lightweight tasks running over a fixed number of threads
• Work-stealing schedulers to load balance threads
• State of the art software paradigm for algorithms with strongly dynamic behavior

(e.g., recursive algorithms)

Maximal datapath usage and throughput

3
6

Simple Automatic Partitioning
• Similar to A/E decoupling in connecting static FSM through buffers
• Load balancing to maximize parallelism and kernel utilization

– Dispatch computation to processing units based on availability

for (i = 0; i < num_rows, i++) {
tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

Each dynamic-bound inner loop is mapped to a loop
processing array (LPA), which consists of multiple loop

processing units (LPUs). The distributor contains a scheduler
with a dynamic work distribution policy.

Simple case: no recursion possible

A

B

C

So
ur

ce
: M

. T
an

, B
. L

iu
, R

. Z
ha

o,
 S

. D
ai

, a
nd

 Z
. Z

ha
ng

, I
CC

AD
, 2

01
5

3
7

Multithreaded Runtime Systems in Hardware
• Very few efforts to “imitate” Cilk and TBB in HLS (1/2): ParallelXP

– Not quite Cilk/TBB nor really HLS
– Exploits the continuation passing idea to create a customizable runtime system where users

can plug in their own processing elements

Support for
recursion

Load balancing
in hardware

So
ur

ce
: T

. C
he

n,
 S

. S
rin

at
h,

 C
. B

at
te

n,
 a

nd
 G

. E
. S

uh
, M

IC
RO

-5
1,

 2
01

8

3
8

Multithreaded Runtime Systems in Hardware
• Very few efforts to “imitate” Cilk and TBB in HLS (2/2): TAPAS

– More of an HLS/compiler effort, based on a compiler front end supporting fork-join
– Only direct connection between task units based on parent-child relations (multiple units

for the same task? load balancing among them?)

So
ur

ce
: S

. M
ar

ge
rm

, A
. S

ha
rif

ia
n,

 A
. G

uh
a,

 A
. S

hr
ira

m
an

, a
nd

 G
. P

ok
am

, M
IC

RO
-5

1,
 2

01
8

3
9

6
Conclusions

HLS, software programmers, and accelerators

4
0

Takeaway

• High-Level Synthesis is a fairly mature field with a number of options available

• Of commercial interest virtually only for FPGAs; ASIC designers seem to stick almost
exclusively to RTL because they want to get everything they can from technology

• Still, it is not really meant to (nor in fact does) give access to FPGAs for software
programmers; most of the available options speed-up development for hardware
engineers who more or less know what they want

• Only very slow movement towards software support for irregular parallelism (the
one which might interest software programmers attracted by FPGAs).

4
1

Caveat #1

• Processors exploit amazingly well transistors in a given technology
• GPUs do that too and also extract a huge lot of parallelism—when the

application fits the architecture
• ASICs are for the lucky few, but if an application is sufficiently important

(e.g., Google’s TPUs), they are unbeatable, almost by definition
• On FPGAs, one must fight the overhead of reconfigurability (one order of

magnitude slower and bigger?) before one can gain!
• Maybe FPGAs are not the right reconfigurable platform for accelerators…

The accelerator design must compensate
for the FPGA reconfigurability

4
2

Caveat #2

• HLS is getting better at designing the computational part of accelerators
• Most of the performance depends on moving data efficiently
• Even the simplest aspects of this are hard or hopeless for HLS compilers

(memory disambiguation, etc.)
• Few tools to help designing application-specific memory systems
• Expect to plan data movement by hand—and to code it in RTL…

“It’s the memory, stupid!”
Dick Sites, 1996

4
3

Caveat #3

• HLS tools are ok with fine grain parallelism (akin to ILP) but not more
• HLS tools have embraced some languages for specific computational

patterns (CUDA, OpenCL,…)—but are GPUs not better when you can use
these languages proficiently?

• Very limited efforts and progress in adopting programming models where
FPGA acceleration might truly excel

• Manual design in RTL (with ad-hoc use of HLS, perhaps) seems the only
way of achieving truly competitive accelerators today

HLS may give you great kernels but does
not give you full accelerators

4
4

References
• M. Tan, B. Liu, S. Dai, and Z. Zhang, Multithreaded pipeline synthesis for data-parallel kernels, ICCAD, November

2014
• T. Ham, J. L. Aragón, and M. Martonosi, Decoupling data supply from computation for latency-tolerant

communication in heterogeneous architectures, ACM TACO, June 2017
• T. Chen and G. E. Suh, Efficient data supply for hardware accelerators with prefetching and access/execute

decoupling, MICRO-49, October 2016
• J. Choi, S. D. Brown, J. H. Anderson, From Pthreads to Multicore Hardware Systems in LegUp High-Level Synthesis

for FPGAs, IEEE TVLSI, October 2017
• M. Tan, B. Liu, R. Zhao, S. Dai, and Z. Zhang, ElasticFlow: A complexity-effective approach for pipelining irregular

loop nests, ICCAD, November 2015
• R. Halstead and W. Najjar, Compiled multithreaded data paths on FPGAs for dynamic workloads, CASES, September

2013
• T. Chen, S. Srinath, C. Batten, and G. E. Suh, An architectural framework for accelerating dynamic parallel

algorithms on reconfigurable hardware, MICRO-51, October 2018
• S. Margerm, A. Sharifian, A. Guha, A. Shriraman, and G. Pokam, TAPAS: generating parallel accelerators from

parallel programs, MICRO-51, October 2018

	Advanced�Computer Architecture�—�Part II: Embedded Computing�Challenges of HLS
	Difficult Cases for HLS
	1�Variable Latency
	Variable Latency
	Conservative Pipelines
	Conservative Pipelines
	Conservative Pipelines
	Pipeline Stalling
	Pipeline Stalling
	Dataflow
	Dataflow
	Superscalar Processors
	2�Memory and Caches
	Access/Execute Decoupling
	Access/Execute Decoupling
	Access/Execute Decoupling
	Out-of-Order Access/Execute Decoupling
	Locally Out-of-Order Pipelines
	3�Nested Loops
	Variable Loop Bounds
	Variable Loop Bounds
	Access/Execute Decoupling
	Dataflow
	Loop-Carried Dependencies
	Superscalar Processors
	4�Multiple Pipelines
	Spatial Parallelism
	Loop Unrolling
	Task Parallelism (Loop Replication)
	Task Parallelism (Loop Replication)
	Multithreading
	Multithreading
	Simple Multithreading
	5�Advanced Fork-Join Schemes
	Multithreaded Runtime Systems
	Simple Automatic Partitioning
	Multithreaded Runtime Systems in Hardware
	Multithreaded Runtime Systems in Hardware
	6�Conclusions
	Takeaway
	Caveat #1
	Caveat #2
	Caveat #3
	References

