Advanced
Computer Architecture

Part Il: Embedded Computing
Challenges of HLS

Paolo lenne

<paolo.ienne@epfl.ch>

(with Lana Josipovic)

Difficult Cases for HLS

 Which schedules can be achieved with HLS tools?
— What are desirable schedules?

* How software programmers handle such cases?
— What is the situation with traditional multicore processors?

* Has the research community tried the same for HLS?

1

Variable Latency

How can one cope with variable latency operations

Variable Latency

e Variable latencies in computations, memory accesses, or loop execution time
— Floating-point units, cache hit/miss, variable loop bounds, early-exit condition,...
— Prevent good pipelining using standard HLS techniques

Conservative Pipelines

e Static HLS: assume the worst-case latency
— Reserve additional pipeline stages for variable-latency operations
— Hardware overhead in area (power, timing)—=> may not be feasible for larger latencies
— High throughput in particular cases (e.g., no loop-carried dependencies on variable-latency op)

for (i = @; i < num_rows, i++) {
tmp = O;
s = row[i]; e

row[i+1];
Sparse-matrix

for (c = s; c < e; c++) { dense-vector
cid = col[c];

tmp += val[c] * vec[cid]; multiplication
} (SpMV)

Focus on the inner
loop, initially

out[i] = tmp;

Conservative Pipelines

» Static HLS: assume the worst-case latency

— Reserve additional pipeline stages for variable-latency operations

— Hardware overhead in area (power, timing)—=> may not be feasible for larger latencies

— High throughput in particular cases (e.g., no loop-carried dependencies on variable-latency op)

for (i = @; i < num_rows, i++) {
tmp = O;

s = row[i]; e row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] *Ivec[cid];l

}

Variable-latency

out [1] = tmp, memory access

}

i c1 i c2 i c3 i calcsice i c7 iocgiocoiciofcnn
iter 1 | Id Id mul add |
iter 2 | Id Id (cache miss) mul add
iter 3 | i Id Id mul add

Assuming worst-case latency: regardless of whether a cache hit or miss
occurs, create schedule assuming it is a miss

Cache hit latency =1
Cache miss latency =4
N (number of loop iterations) =3
L (iteration latency) =9
Il (initiation interval) = 1
Total latency = (N-1)*I1 + L=17

High throughput at a latency & area cost

Conservative Pipelines

» Static HLS: assume the worst-case latency

— Reserve additional pipeline stages for variable-latency operations

— Hardware overhead in area (power, timing)—=> may not be feasible for larger latencies

— High throughput in particular cases (e.g., no loop-carried dependencies on variable-latency op)

for (1 = 0; i < num_rows, i++) {
tmp = 0;

s = row[i]; e row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp val[c] * vec[cid];

} Variable-latency
. addition
out[i] = tmp;

}

 c1 { c2 | 3| c4a i cs i celc7 ic8 !9 lcl0lClllicl2lc13ici3
iter 1 | Id Id mul add \L‘ l i i i i
iter 2 | | | Id Id mul add W, | !
iter 3 | i | | | | [d [mul * add

Assuming worst-case latency: regardless of actual add latency, create schedule assuming max.
latency

Add latency = 1-3
L=8
Il = 3 always!
Total latency = 14

Worst-case throughput in case of loop-carried dependency!
(plus latency & area cost)

Pipeline Stalling

e Static HLS: stall entire pipeline in case of a variable-latency event
— Schedule each operation based on its minimum latency
— If an operation does not complete within min. latency, block operation and stall pipeline

ct | c2 | 3| ca | cs | 6 | c7 | c8 | co |clo | ci1| c12| c13
for (i = @; i < num_rows, i++) { iter 1 | Id Id L FsMstall 1 mul add
tmp = 0; B iter 2 Id Id (cache miss) mul add
s = row[i]; e = row[i+1]; iter 3 Id =___I=S_M_st_a\IjL__' Id mul add
iter 4 | Id Id mul add
for (c = s; c < e; c++) { iter 5 ‘ Id ld | mul add
cid = col[c];
tmp += val[c] * Ivec[cid];l Stalling entire pipeline in case the operation does not complete in min. latency
} Variable-latency
. memory access Cache hit latency = 1
out[i] = tmp; Cache miss latency = 4
} Il=1-4

Best-case total latency =11
Worst-case total latency = 17

Performance significantly varies with the number and distribution of cache misses

Pipeline Stalling

e Static HLS: stall entire pipeline in case of a variable-latency event
— Schedule each operation based on its minimum latency
— If an operation does not complete within min. latency, block operation and stall pipeline

ct | c2 | 3| ca | cs | 6 | c7 | c8 | co |clo | ci1| c12| c13
for (i = @; i < num_rows, i++) { iter1 | Id Id L FsMstall __ | mul add
tmp = 0; iter 2 Id Id_(cfche-_m_issi___ mul add
s = row[i]; e = row[i+1]; iter 3 Id :___FS_M_st_anl___I Id mul add
iter 4 3 Id Id mul add
for (c = s; c < e; c++) { iter 5 | Id ld | mul add
cid = col[c];
tmp val[c] * vec[cid]; Stalling entire pipeline in case the operation does not complete in min. latency
} Variable-latency
addition ; ;
out[i] = tmp; P Cl C2 C3 Cc4 C5 Ccé6 c7 c8 Co C10 Cl1 C12
} iter 1 Id Id mul add
iter 2 Id Id mul add
iter 3 Id Id mul |' ‘| add
iter 4 Id d mul I FSMstall ! add
iter 5 Id Id '______,' mul add

Dataflow

 Dynamic HLS: naturally handles variable latencies
— Handshaking mechanism stalls the successors of long-latency operation
— Other computations can advance during stall
— Yet, computations in the same unit happen strictly in order

l c1] c2 | 3} c4 | C5 | C6 | C7T | C8 | C9}cClO}Cll| Cl2]| C13
ter1 | Id | Id mul | add | | | |
for (i = @; i < num_rows, i++) { iter 2 i Id Id (cache miss) mul add | |
tmp = 0; iter 3 | | ld [id | ; | mul add |
s = row[i]; e = row[i+1]; iter 4 | ! ! Id Id ! ! mul add
iter 5 | 5 d | id | mul add |
for (c = s; c < e; c++) { Dynamically scheduled pipeline: some computations can advance during long-
cid = col[c]; latency stall

tmp += val[c] *Ivec[cid];l

}

Variable-latency

out [1] = tmp, memory access

}

Dataflow

 Dynamic HLS: naturally handles variable latencies
— Handshaking mechanism stalls the successors of long-latency operation
— Other computations can advance during stall
— Yet, computations in the same unit happen strictly in order

l c1] c2 | 3} c4 | C5 | C6 | C7T | C8 | C9}cClO}Cll| Cl2]| C13
ter1 | Id | Id mul | add | | | |
for (i = @; i < num_rows, i++) { iter 2§ Id Id (cachemiss) | mul add ! !
tmp = 0; iter 3 | ; d [§ i I mul add |
s = row[i]; e = row[i+1]; iter 4 | ! ! Id Id ¢ ! ~ mul add
iter 5 | 5 d | d jo_d__1__ 7 mul add |
for (c = s; c < e; c++) { Dynamically scheduled pipeline: some computations can advance during long-
cid = col[c]; latency stall
tmp val[c] * vec[cid];
¥ Variable-latency c1 | c 3 | | ¢ | 6| 7| 8 co | clo]l ci1
addition iter 1 Id Id mul add
out[i] = tmp; iter 2 Id | Id mul add
} iter 3 Id Id mul add
iter 4 d | 1d | ma add

Schedule also adapts well in the presence of loop-carried variably-latency
dependencies

However, pipeline is sometimes unused due to in-order computation execution

Superscalar Processors

* Fully out-of-order pipelines
— Loop iterations are started speculatively
— All operations execute completely out-of-order, only respecting dependencies

i C1 ! C2 | C3 | C4 i C5 ! C6 | C7 | C8 | C9 ! CIO | CIl | C12 |
iter 1 [Id Id mul add = | | | | | |
iter 2 | Id Id (cache miss) muli\r add - | i
iter 3 i i Id Id mul | i add |
iter 4 | | | Id Id mul | | add

Out-of-order processors: perfect throughput if perfect instruction supply and branch prediction

* In HLS, associativity analysis could even give a better result

— Yet, nobody went there in HLS in a general way, not even respecting dependence ordering

c1 i 2 { 3| ca i csice i c7 | 8 icolcio
iter 1 Id Id mul add
iter 2 Id Id (cache miss) mul add
iter 3 Id Id mul add
iter 4 Id Id mul add

Out-of-order pipelines: maximal throughput exploiting further reordering opportunities

2

Memory and Caches

A key source of variable latency

Access/Execute Decoupling

e Separate variable-latency memory accesses and computation

— Data is loaded from memory, stored in FIFOs, and sent to execution datapath as soon as ready

— Requires nontrivial code restructuring (by user or compiler)

Original

AP slice

EP slice

for (i=0; i<100; i++) {
vl = LOAD(&a[i]);

for (i=0; i<100; i++) {
vl = LOAD(&a[i]);

vl = CONSUME();

v2 = LOAD(&b[1]); PRODUCE (v1) ; v2 = CONSUME();
val = vl + v2 * k; v2 = LOAD(&b[1]); val = vl + v2 * Kk;
STORE(&c[1], val); PRODUCE (v2) ; STORE_VAL(val);

! STORE_ADDR(& c[i]); 1

for (i=0; i<100; i++) {

v Communication Queue v

Mem Interface <

Address
Computation
Y =
Load \L J Store Load Value Value
0a oa)
Addr Value Addr Computation
v y

Store Value

=== Supplier Device ===

== Computation Device ==

Source: T. Ham, J. L. Aragén, and M. Martonosi, ACM TACO, June 2017

Access/Execute Decoupling

e Separate variable-latency memory accesses and computation
— Data is loaded from memory, stored in FIFOs, and sent to execution datapath as soon as ready

— Requires nontrivial code restructuring (by user or compiler)

for (i = @; i < num_rows, i++) {
tmp = 0;

for (i = @; i < num_rows, i++) { s = row[i]; e = row[i+l];

tmp = O;
#pragma HLS dataflow

s = row[i]; e = row[i+l];
for (c = s; c < e; c++) {
for (c = s; c < e; c++) { cid = colfc]; o
cid = col[c]; fifo_vec.write(vec[cid]);
tmp += val[c] * vec[cid];]
} vec = fifo_vec.read();
tmp += val[c] * vec;
out[i] = tmp; }
' out[i] = tmp;

Using the dataflow pragma and A/E decoupling in VivadoHLS

Access/Execute Decoupling

e Separate variable-latency memory accesses and computation

— Data is loaded from memory, stored in FIFOs, and sent to execution datapath as soon as ready
— Requires nontrivial code restructuring (by user or compiler)

C1 c2 C3 c4 Cc5 Cé c7 c8 c9 C10 Cl1 C12 C13 Cl4
iter 1 Id Id enq
iter 2 Id Id (cache miss) enq
for (i = @; 1 < num_rows, i++) { jters3 d §___stalli___1 !d | enq
tmp = 0; iter 4 Id Id enq
s = row[i]; e = row[i+l]; | |
i c1 1 c2 | c3 i ca i cs i ce i c7 i cg i ocoiclolcllicl2ci3iocla
for (c = s; c < e; c++) { iterli i i deq mul | add | ! i i i i
cid = col[c]; iter 2 | i i i | | |
tmp += val[c] *Ivec[cid];l iter3§ : : : i | : :
} : iter 4 | ! | | | | |
Variable-latency ter © i i i i i i i | deq ol ~dd |
out[i] = tmp; MEMOry access iere | | | | | | | | deg mul add
} iter 7 i i i i i i i i E deq | mul add

In-order access/execute decoupling

Execution similar to that of a dynamic schedule but composing static building blocks

But in-order execution still prevents full datapath utilization

Out-of-Order Access/Execute Decoupling

e Separate variable-latency memory accesses and computation

— Allow out-of-order dequeuing
— Requires even less trivial code restructuring (by user or compiler)

C1 Cc2 C3 Cc4 C5 i Cé E Cc7 C8 (0] C10 Cl11 C12
for (i = ©; i < num_rows, i++) { iter1 | |Id Id eng | deq mul add
tmp = 0; iter 2 Id Id (cache miss) enq deq mul add
s = row[i]; e = row[i+1]; iter 3 Id Id enq | deq mul add
iter 4 Id Id enq deq mul add

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] *Ivec[cid];l

Out-of-order access/execute decoupling: maximal throughput

Latency of some iterations can be completely hidden
- depends on distribution of short/long iterations

}

Variable-latency

out [1] = tmp, memory access

} Effective Il can be 1 even in the presence of cache misses
- unlike previous solutions, a cache miss does not necessarily lower the |l
(other iterations can proceed out-of-order)

Locally Out-of-Order Pipelines

 “Multithreaded” Pipeline Synthesis
— Only locally dynamically scheduled and locally out-of-order,
— Specific operations are suspended (i.e., context saved) and can execute out-of-order
— Suspended operations releases resources, subsequent ones can continue without stalling
— No general tagging and no reordering thanks to associativity and commutativity

Thread scheduler

c1 i c { c3 i ca i cs | 6 78| c9ici

Thread suspended iter 1 Id Id mul add
____________ y] ThreadiD | Context] ;
X e | G iter 2 Id Id (cache miss) mul add
S~ readl ontext .
.o iter 3 Id Id mul add
S~a iter 4 Id Id mul add

Thread resumed ™ I ThreadiD | Context

Locally out-of-order pipelines: maximal throughput

Source: M. Tan, B. Liu, S. Dai, and Z. Zhang, ICCAD, 2014

Pipelined datapath Context buffer

Iterations can reorder inside the pipeline and a context
buffer keeps track of the order and the context
(i.e., live values of the thread)

3

Nested Loops

When variable latency becomes truly painful

Variable Loop Bounds

* In addition to operations, the number of loop iterations can also be variable

— E.g., loop bounds computed at runtime, early exit condition,...
— As in the case of variable-latency operations, not trivial to handle with standard HLS

for (i = @; i < num_rows, i++) {
tmp = 9;

s = row[i]; e = row[i+1];

Ifor' (C = s; C < e; Cc++) {I Variable loop bounds Now considering

cid = col[c];
tmp += val[c] * vec[cid]; the whole code

}

out[i] = tmp;
}

Variable Loop Bounds

e Static HLS: start a new inner loop only when previous one completes
— When all loop bounds are known, loops can be analysed statically and flattened
— In general case: exit inner loop, compute new loop bounds, enter inner loop

for (i = @; i < num_rows, i++) {
tmp = 9;
s = row[i]; e

row[i+1];

Inner-loop pipeline has to empty before another inner loop can start: pipeline

for (c = s; c < e; c++) {] variable loop bounds
I ¥ ’ I P empty for inner loop iteration latency + loop bound computation latency

cid = col[c];
tmp += val[c] * vec[cid];

} Average Il lowered during loop transitions

out[i] = tmp;

Id Id Id mul add

} A
[4 B)
C1 ; Cc2 C3 C4 i C5 i C6 Cc7 c8 c9 Cc10 C11 Cc12 C13 C13 Cl14 C15 C16 c17 E C18 C19 C20 E Cc21 c22 Cc23 E
loop 1 Id Id Id mul add ' i !
| Id Ad | mul | add E
! Id Id mul add |
i Id Id mul add |
|
|

T T
1 : :
L 8 8 B 8 B B B § §B § § § § |

loop 3

Access/Execute Decoupling

* A/E decoupling works here, but the transformation is even more complex:

— Compute loop bounds and enqueue into FIFO
— Dequeue bounds and execute inner loop

for (i = @; i < num_rows, i++) {

tmp = 0; c1 c2 c3 ca4 5 6 | c7 | c8 cO ! clo ! c11 ! €12 | c13 | c14
s = I"OW[i]; e = I"OW[i+1]; loop 1 Id enq deq Id Id mul add
Id Id mul add
loop 2 Id enq deq Id Id mul add
Ifor‘ (c = s; C < e; C++) {I Variable loop bounds a1 1 ol add
cid = colfc]; Id Id mul add
tmp += val[c] * vec[cid]; loop 3 Id | enqg deq | Id Id | mul add

}

out[i] = tmp; Il =1 (assuming FIFOs are appropriately sized)

}

Dataflow

* Dynamic HLS: naturally starts a new loop as soon as pipeline is ready

— No special mechanism or transformation required

for (i = @; i < num_rows, i++) {

o = o i c1 i c2 i 3! cal s ice | c7 g9 icwolcinloci2]
p = - . loop 1 Id Id mul add i i i i i

s = row[i]; e = row[i+l]; E i i d ol 2dd | : i | |

loop 2 | [d d_| I mul add

IfOP (C = s; C < e; C+t) {IVaﬁaNeIoopbounds § i i : Id Id mul add | |
cid = colfc]; i | 5 Id | Id mul add i
tmp += val[c] * vec[cid]; loop 3 | ! - ! i Id Id | mul add

}

out[i] = tmp; Il =1 (no transformations needed, FIFOs placement automatic)

}

Loop-Carried Dependencies

* Dynamic HLS: in-order pipelines
— Different operations execute out of order with respect to each other, but each operation
processes its own data in order

— Limited throughput in case of long-latency loop-carried dependencies

for (i = @; i < num_rows, i++) {
tmp = 9;
s = row[i]; e

row[i+1];

for (c = s; c < e; c++) {

cid_=_col[c]; In-order dataflow execution: the long-latency addition limits the Il of
tmpval [c] * vec[cid]; each inner loop to Il = 3. A new inner loop can start at best one cycle
} Long latency adder after the last iteration of the previous loop
out[i] = tmp;
}
cT1 { €2 | ¢3! c4 { ¢5 | ¢c6 | C7 { €8 { €9 | Cl0 | Cl11 { C12 | C13 | C13 | C14 | C15 | Cl6 | C17 | C18 | C19 |
loop1 | Id | Id | Id mul add
: e d | mul e add
loop 2 | Id i i Id |d mul add i i I i i i i
i | i | | i __i__Nwd | d | ml ™ add N, ; : i
| ; | | ; | ; ; ; L : | Id Id mul add |
loop 3 | Id i 5 | i ; S B d_| 1d mul add

Superscalar Processors

* Fully out-of-order pipelines
— All loop iterations (outer and inner) are started speculatively
— All operations execute completely out-of-order, only respecting dependencies

| c1 | Cc2 | €3 | c4 | C5 { c6 | C7 | C8 | C9 | Cl0 | Cl1 | Cl2 | C13 | CI13 | Cl4 | CI5 |
loop1| Id Id Id mul add i i i i i i i
| : : | d | id mul add
loop 2 | Id Id Id mul add w_ i i | | i i
[1d [1 | mul > add N
! ! ! ! ! ! ! ! Id Id mul add !
loop 3| d [d [i mul add

Out-of-order processors: again perfect throughput if perfect instruction supply and branch prediction

a4

Multiple Pipelines

Exploiting parallelism beyond ILP

Spatial Parallelism

e So far, instruction-level parallelism within a single datapath
* Replicate datapath/kernel to increase parallelism
* Challenges:

— How to express the parallelism to the compiler?
— How to maximize utilization of each datapath?

Loop Unrolling

e Standard unrolling: replicate computations within a loop
— Achieves spatial parallelism in regular loops
— Not suitable for irregular code (e.g., unknown loop bounds, memory/data dependencies)

for (i = ©; 1 < num_rows, i++) {

tmp = 0; i C1 | C2 | C3 | C4 i C5 | C6 | C7 { €8 | C9 | Cl10 | Cl1
s = row[i]; e = row[i+1]; iter 1 Id Id mul ad i i i i
id [1d mul dd w_ | ; ;
for (c = s; c < e; c++) { iter 2 |] Id Id mul N i E
#pragma HLS unroll factor=2 | i Id Id mul ddw]
cid = col[c]; iter 3 | ; | ; Id \d mul Sddw_
tmp += val[c] * vec[cid]; | E Id Id mul Add
}
out[i] = tmp; Does not increase performance due to loop-carried dependency!
} Exactly the same performance as a perfect pipeline (effective Il = 1)

Unrolling with an HLS pragma

Task Parallelism (Loop Replication)

* Replicate loops and execute multiple loop instances in parallel

— Difficult to express using a C-based HLS tool (code restructuring and pragmas)

#pragma HLS dataflow

for (i = @; i < num_rows, i+=2) {
tmpl = 9; tmp2 = 0O;
fifo_sl.write(row[i]); fifo_el.write(row[i+l]);
for (i = @0; 1 < num_rows, i++) { fifo_s2.write(row[i+1]); fifo _e2.write(row[i+2]);
tmp = 0O;) .
s = row[i]; e = row[i+1]; sl=fifo_sl.read(); el=fifo_el.read();
for (c = s1; c < el; c++) {
for (c = s; c < e; c++) { cidl = col[c];
cid = col[c]; tmpl += val[c] * vec[cid];
tmp += val[c] * vec[cid]; }
} out[i] = tmpl;
out[i] = tmp; s2=fifo_s2.read(); e2=fifo_e2.read();
} for (c = s2; c < e2; c++) {
cid2 = col[c];
tmp2 += val[c] * vec[cid]; Looks and feels like
} .
out[i+1] = tmp2; VivadoHLS code but almost
} certainly does not work!

Using the dataflow pragma and A/E decoupling to parallelize loops

Task Parallelism (Loop Replication)

* Replicate loops and execute multiple loop instances in parallel

— Difficult to express using a C-based HLS tool (code restructuring and pragmas)

for (i = @; i < num_rows, i++) {
tmp = 9;

s = row[i]; e = row[i+1];) Innerloop>1
for (c = s; c < e; c++) { »I I»
cid = col[c];
tmp += val[c] * vec[cid]; Outer |00p
} o (I »
outlil = s) Inner loop 2

Multithreading

* C-based HLS tools require a structural description of the pipeline connectivity
* Yet, fork-join schemes express the same in software implementations

for (i = @; i < num_rows, i++) { for (i = ©; i < num_rows, i+=2) { . .
tmp = 0; s = row[i]; e = row[i+1]; Inner loop in a function
s = row[i]; e = row[i+l]; pthread_create(&thi, NULL,Icolvec_prodl s, e);
for (c = s; c < e; c++) { s = row[i+1]; e = row[i+2];

cid = col[c]; pthread create(&th2, NULL, colvec_prod, s, e);
tmp += val[c] * vec[cid];
} pthread_join(thl, &tmpl);

pthread_join(th2, &tmp2);
out[i] = tmp;
} out[i]

= tmpl;
out[i+1l] =

tmp2;

Using a common fork-join scheme to parallelize loops

Multithreading

* Research work has shown support for pThreads in HLS

* Some (important) limitations: number of tasks/threads known at compile time
(unadapted to recursive algorithms, etc.)

[N
-
o
N
—
]
Qo
o
=
8]
@)
A
j—
>
|_
w
w
dd_thread_ID =
. a rea
. . . main = — add0_start 1 9dd() c
for (i = @; i < num_rows, i++) { thread var0| Jadd_start add0_arg a
- 0- |~ — b
tmp = 9; thread varl | Jadd_arg : local S
. . add0_finish] c
s = row[i]; e = row[i+1]; FSM mult_start RAM <
thread var2 = -
mult_thread||ID | | -
for (c = s; c < e; c++) { thread var3 add]_stait} 44 | =
. addl arg c
cid = col[c]; T ——” Tocal 2
_ % . . pthreadpoll |pthreadpoll Tpthreadpoll Ppthreadpoll addl _finish oca o
tmp += val[c] vec[cid]; function_ID |thread_ID [return val |[finish RAM B
} Y a
Y Y\ multO_start> 1 A
: muli0_finion| U0 =
out[i] = tmp; — o
mult0_return_val - <
} = = Replicated O
mult0 mem port .
“““ o il ol it i (i Pttt < ROMO -
mult0 _mutex _pgﬁ o
st rreee === = -l - -—"=-"="==-== o
multl_star& =
mult]_finish| mult1 IS
N mult]l return val
S . _________ multl_ mem po Replicated
_______________ mult]_mutex port] __ROMI

Simple Multithreading

* Replicate loops and execute multiple loop instances in parallel
* Increases parallelism, but datapaths not fully used if inner loop latencies differ

for (i = @; i < num_rows, i++) {
tmp = 9;
s = row[i]; e

Loop 2 (i = 2) Loop 4 (i = 4)

row[i+1]; loopl(i=1) | % Loop 3 (i = 3) !

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

¥

out[i] = tmp;
}

Datapath unused due to different loop latencies

5

Advanced Fork-Join Schemes

Cilk, CilkPlus, Intel TBB, etc.

Multithreaded Runtime Systems

Old idea in HPC: Cilk (MIT, 1994) and Cilk Plus (Intel, 2009), then Threading Building
Blocks or TBB (Intel, 2000’s)

Lightweight tasks running over a fixed number of threads
Work-stealing schedulers to load balance threads

State of the art software paradigm for algorithms with strongly dynamic behavior
(e.g., recursive algorithms)

Loop1(i=1) Loop 3 (i=3)
Loop 2 (i = 2) Loop 4 (i = 4)

Loop1(i=1) Loop 3 (i =3) Loop 4 (i = 4)
Loop 2 (i = 2) Loop 5 (i=5)

Maximal datapath usage and throughput

Simple Automatic Partitioning

* Similar to A/E decoupling in connecting static FSM through buffers §
.r- . a

* Load balancing to maximize parallelism and kernel utilization S
— Dispatch computation to processing units based on availability Eo

A ¥ N

- ,” Distributor 'E

for (i = @; i < num_rows, i++) { / ’,, &
tmp = 0O; >A <), valy> Il’ ¥ ¥ ¥ a
s = row[i]; e = row[i+1]; w

3 B)

for (c = s; c < e; c++) { / N
cid = col[c]; : \ n:'\
tmp = valle] * vec[cid]; - B <, valg> \..\‘ LPU1" LF’UQl I_PUKl E

; p / \\‘ Collector 02
out[i] = tmp; c : k : '(_U
} } <. valg> ‘?’ Loop Process?ng Array (LPA) 2
]

Each dynamic-bound inner loop is mapped to a loop A

processing array (LPA), which consists of multiple loop
processing units (LPUs). The distributor contains a scheduler
with a dynamic work distribution policy.

Simple case: no recursion possible

Multithreaded Runtime Systems in Hardware

* Very few efforts to “imitate” Cilk and TBB in HLS (1/2): ParallelXP
— Not quite Cilk/TBB nor really HLS

— Exploits the continuation passing idea to create a customizable runtime system where users
can plug in their own processing elements

Source: T. Chen, S. Srinath, C. Batten, and G. E. Suh, MICRO-51, 2018

L?ad balancing ! Work Stealing Network Arg/Task Network steal steal
in hardware Work Stealing Network i ¥ +— req resp
;3 i i) Net IF Net IF $i 4
.| Argument|/ Task Network flf ! T arg$ Jtask | i v lv
, | | arg i queue
v . Tile | P-Store [— Aég/'l'task MU
cPUlll IF _ i task Olf er | «—task
PE || PE ||| | 3] '
7 Y 4 h A A |
A I B e task| ftask
(5] 1 5 5 ff o I) L
¢$ $$ $$ i steal tzrsgk cont steal t?arsgk cont
A\ 4 f
T i Worker Support for
| PE | .o PE recursion
Last-Level Cache !
; |
Memory Controller | : x $ mem mem

7
Cache Interface req resp

Multithreaded Runtime Systems in Hardware

* Very few efforts to “imitate” Cilk and TBB in HLS (2/2): TAPAS

— More of an HLS/compiler effort, based on a compiler front end supporting fork-join

— Only direct connection between task units based on parent-child relations (multiple units
for the same task? load balancing among them?)

/ Parent
/ Input ? Output

Task-0 Unit / Spawn Sync
Queue E:
/ | 23
Spa""”g ?Sync /| Args RAM Parent ID Child# 3 <
Task-1 Unit / < <t+—
Queue /// NTask31 (_9.
" g
Spawn ’ = TXU Tiles o
" Task-2 Unitzﬁ Sy;nc = M stack %O;L—m—({?:
| e g
= <—Npjj—> =

Source: S. Margerm, A. Sharifian, A. Guha, A. Shriraman, and G. Pokam, MICRO-51, 2018

6

Conclusions

HLS, software programmers, and accelerators

Takeaway

High-Level Synthesis is a fairly mature field with a number of options available

Of commercial interest virtually only for FPGAs; ASIC designers seem to stick almost
exclusively to RTL because they want to get everything they can from technology

Still, it is not really meant to (nor in fact does) give access to FPGAs for software
programmers; most of the available options speed-up development for hardware
engineers who more or less know what they want

Only very slow movement towards software support for irregular parallelism (the
one which might interest software programmers attracted by FPGAs).

Caveat #1

4 N
The accelerator design must compensate

for the FPGA reconfigurability
. y,

Processors exploit amazingly well transistors in a given technology

GPUs do that too and also extract a huge lot of parallelism—when the
application fits the architecture

ASICs are for the lucky few, but if an application is sufficiently important
(e.g., Google’s TPUs), they are unbeatable, almost by definition

On FPGAs, one must fight the overhead of reconfigurability (one order of
magnitude slower and bigger?) before one can gain!

Maybe FPGAs are not the right reconfigurable platform for accelerators...

Caveat #2

“It’s the memory, stupid!”

Dick Sites, 1996

. J

HLS is getting better at designing the computational part of accelerators
Most of the performance depends on moving data efficiently

Even the simplest aspects of this are hard or hopeless for HLS compilers
(memory disambiguation, etc.)

Few tools to help designing application-specific memory systems
Expect to plan data movement by hand—and to code it in RTL...

Caveat #3

4 A
HLS may give you great kernels but does

not give you full accelerators
" J

HLS tools are ok with fine grain parallelism (akin to ILP) but not more

HLS tools have embraced some languages for specific computational
patterns (CUDA, OpenCL,...)—but are GPUs not better when you can use

these languages proficiently?

Very limited efforts and progress in adopting programming models where
FPGA acceleration might truly excel

Manual design in RTL (with ad-hoc use of HLS, perhaps) seems the only
way of achieving truly competitive accelerators today

References

M. Tan, B. Liu, S. Dai, and Z. Zhang, Multithreaded pipeline synthesis for data-parallel kernels, ICCAD, November
2014

T. Ham, J. L. Aragdn, and M. Martonosi, Decoupling data supply from computation for latency-tolerant
communication in heterogeneous architectures, ACM TACO, June 2017

T. Chen and G. E. Suh, Efficient data supply for hardware accelerators with prefetching and access/execute
decoupling, MICRO-49, October 2016

J. Choi, S. D. Brown, J. H. Anderson, From Pthreads to Multicore Hardware Systems in LeqUp High-Level Synthesis
for FPGAs, |IEEE TVLSI, October 2017

M. Tan, B. Liu, R. Zhao, S. Dai, and Z. Zhang, ElasticFlow: A complexity-effective approach for pipelining irreqular
loop nests, ICCAD, November 2015

R. Halstead and W. Najjar, Compiled multithreaded data paths on FPGAs for dynamic workloads, CASES, September
2013

T. Chen, S. Srinath, C. Batten, and G. E. Suh, An architectural framework for accelerating dynamic parallel
algorithms on reconfigurable hardware, MICRO-51, October 2018

S. Margerm, A. Sharifian, A. Guha, A. Shriraman, and G. Pokam, TAPAS: generating parallel accelerators from
parallel programs, MICRO-51, October 2018

	Advanced�Computer Architecture�—�Part II: Embedded Computing�Challenges of HLS
	Difficult Cases for HLS
	1�Variable Latency
	Variable Latency
	Conservative Pipelines
	Conservative Pipelines
	Conservative Pipelines
	Pipeline Stalling
	Pipeline Stalling
	Dataflow
	Dataflow
	Superscalar Processors
	2�Memory and Caches
	Access/Execute Decoupling
	Access/Execute Decoupling
	Access/Execute Decoupling
	Out-of-Order Access/Execute Decoupling
	Locally Out-of-Order Pipelines
	3�Nested Loops
	Variable Loop Bounds
	Variable Loop Bounds
	Access/Execute Decoupling
	Dataflow
	Loop-Carried Dependencies
	Superscalar Processors
	4�Multiple Pipelines
	Spatial Parallelism
	Loop Unrolling
	Task Parallelism (Loop Replication)
	Task Parallelism (Loop Replication)
	Multithreading
	Multithreading
	Simple Multithreading
	5�Advanced Fork-Join Schemes
	Multithreaded Runtime Systems
	Simple Automatic Partitioning
	Multithreaded Runtime Systems in Hardware
	Multithreaded Runtime Systems in Hardware
	6�Conclusions
	Takeaway
	Caveat #1
	Caveat #2
	Caveat #3
	References

